找到 “1” 相关内容 条
  • 全部
  • 默认排序

1 前推回代法原理对于如图所示的辐射状配电馈线,k,i分别为父、子节点, i,j分别为父,子节点,Ci为由节点i的子节点构成的节点集.配网潮流前推回代潮流算法第n 1步的迭代公式如下:节点i的前推计算公式为2 算例IEEE33节点结构3 程序运行结果4 matlab程序clcclearclose

前推回代法潮流计算IEEE33节点算例

1 理论介绍在图11-1(a)所示的网络中,供电点A通过馈电干线向负荷节点b、c和d供电,各负荷节点功率已知。如果节点d的电压也给定,就可以从节点d开始,利用同一点的电压和功率计算第三段线路的电压降落和功率损耗,得到节点c的电压,并算出第二段线路末端的功率,然后依次计算第二段线路和第一段线路的电压降

基于前推回代法的连续潮流计算IEEE33节点算例

在材料科学领域,许多工程师可能会遇见要将陶瓷与金属连接的相关要求,这种要求将直接决定材料的整体性能,也能适用于多种领域,那么请问,陶瓷与金属的连接方法有哪些?1、烧结金属粉末法做法:烧结金属粉末法是通过在特定温度和气氛中,先将陶瓷表面进行金

陶瓷与金属如何连接?

在PCB制造过程中,可能遇见孔损问题,若是处理不当将直接影响到产品的质量和生产效率。孔损可能由多种因素引起,包括断钻咀、钻孔操作不当、参数设置错误、钻咀状态不佳及板材特性等,如何针对这些问题解决?1、排查并处理断钻咀做法:定期检查钻咀磨损情

PCB钻孔出现孔损问题,如何解决?

在PCB制造过程中,钻孔是一个这个样子的环节,直接关系到板子的质量与功能,然而,断钻咀作为常见的钻孔故障之一,不仅影响生产效率,还可能造成材料浪费和成本上升,所以如何排查故障,解决问题?1、断钻咀故障的原因分析主轴偏转过度:主轴不稳定,导致

PCB制造中遇见断钻咀故障,如何解决?

前一段时间我研究了下开关电源,当时有两个问题也是没搞明白。问题是关于NTC热敏电阻与浪涌电流的。 1、为啥小功率电源的NTC不用加继电器,而大功率要加继电器?仅仅是因为降低功耗提高效率吗?2、小功率电源NTC不用考虑热启动吗? 下面给大家说一下我是如何找答案的。 问题背景为了照顾下不是做电源的同学,

NTC热敏电阻与浪涌电流,热启动不会失效?

做硬件的应该都学过模电,我也不例外,大学还是作为第一本专业书来学习的,当然这是好多年前的事儿。 模电中分析三极管电路的时候,一般会分析2种情况,直流通路和交流通路。以下截图就是模拟电路教材的交流通路的分析:其中有两句话值得看一看:1、容量大的电容视为短路2、无内阻的直流电源视为短路 关于这一点,有疑

交流等效电路,电源相当于是接地?为啥?

关于Buck和Boost的,我已经写了几篇,不过很少提到PCB Layout,这篇就说说PCB Layout。 很多DCDC芯片的手册都有对应的PCB Layout设计要求,有些还会提供一些Layout示意图,都是大同小异的。比如我随便列几点buck的设计要点:1、输入电容器和二极管在与IC相同的面

DCDC的Layout终极奥义

1 模糊RBF网络在模糊系统中,模糊集、隶属函数和模糊规则的设计是建立在经验知识基础上的。这种设计方法存在很大的主观性。将学习机制引入到模糊系统中,使模糊系统能够通过不断学习来修改与完善隶属函数和模糊规则,这是模糊系统的发展方向。模糊系统与模糊神经网络既有联系又有区别,其联系表现为模糊神经网络在本质

基于模糊RBF神经网络轨迹跟踪

电力变压器是电力系统中常用的电力设备,用于将高压电能转换为低压电能,或者将低压电能转换为高压电能。它是实现电能传输、配电和转换的重要设备之一。01电力变压器基本结构电力变压器由主要由铁芯和线圈组成。其中,铁芯是由高导磁性的硅钢片叠压而成,用

走进电力设备,了解电力变压器