0
收藏
微博
微信
复制链接

电源去耦电容的阻抗特性

2024-07-04 15:35
407

b21c5d9d907cf6400f313f6d776d2b.jpg

电容在PDN(power distribution network)当中的示意图

想要知道电容如何降低PDN阻抗,首先就要知道电容自身的阻抗特性,自身寄生参数的影响。

话不多说,首先思考一下,纯电容的阻抗是什么样的?

我们可能会想到这样一个公式:

Z=1/(2*pi*f*c)

没错,可是这样不太能帮助我们理解电容在PDN中起到的作用,还不够直观;

我们再思考一下,如果画一个电容的阻抗 VS 频率的曲线会是什么样的呢?

如下图:

ef49e1e5a46568a3389939a01fcb27.jpg


这就是纯电容的阻抗 VS 频率曲线,在曲线中我们可以直观的看出电容阻抗和频率的关系;

下面再来看一下不同容值电容的阻抗曲线:

8fc76f1d55c5bba64e3e3f6644b647.jpg


容值越大,阻抗越小,整个曲线表现为整体向下平移;

正因为电容对于高频信号表现为低阻抗特性,因此,在PDN系统中加了很多去耦电容,但是,我们已经介绍过,电容当中还有寄生电感(ESL)和等效串联电阻(ESR),所以我们还得研究寄生参数的影响;

下面,我们来看一下,纯电感的阻抗特性,公式如下;

Z=2*pi*L*f

同样,我们也看一下电感的阻抗 VS 频率的曲线:

3f2dc95b626efd88984fd081c89f7a.jpg

通过曲线,可以直观看到,电感的阻抗随频率的变化关系;

下面看一下,不同电感值的阻抗曲线,相信此时大家已经有了直观的印象,可以脑补出不同电感的曲线了:

9049ef7935024d5bf4710b5e33d5c7.jpg


下面该电阻了,纯电阻的阻抗 VS 频率曲线如下:

134a95106e2dabfd10af60b529fa65.jpg

下面重点来了

单个器件的阻抗特性知道了,那么他们串联之后是什么样的呢,下面请看电阻和电容串联:

1e9ec7bbc030a86e1d0672a7426c3d.jpg


fae6fc5b84cfeddbf397650923099d.jpg


可以看到,RC串联后,低频部分阻抗呈现容性,大小就是串联电容的阻抗大小,高频部分为阻性,大小为电阻的阻抗大小,下面请看电阻和电感串联:

8af2271780a2017028b5d1257f4d77.jpg

f0371667b035d36d3548a0fb70936e.jpg


 可以看到,RL串联后,低频部分阻抗呈现为阻性,大小为电阻的阻抗大小,高频部分阻抗呈现感性,大小就是串联电感的阻抗大小,下面请看电容和电感串联:

baabedba6c5a2918fadbe867badf19.jpg

8fdf2c21237e376c4dfd54b533315e.jpg

可以看到,LC串联后,低频部分阻抗呈现为容性,大小为电容的阻抗大小,高频部分阻抗呈现感性,大小就是串联电感的阻抗大小,而不同于与电阻串联的一点就是,LC串联会形成谐振,谐振点的频率可以这样计算:

在谐振点处,电容的阻抗值等于电感的阻抗值,即

Z=1/(2*pi*f*c)=2*pi*L*f

推导出f=1/(2*pi*sqrt(LC))

在知道了电容和电感值之后,就可以求出谐振点频率,在此频率之前为容性,在此频率点之后为感性,下图的相位就说明了这一点;

79bc0ac45d5e77919f4966e26d02fd.jpg


好了,以上这些是基本功,都是为了更好地了解非理想电容的阻抗特性做准备,下面请看真实电容的阻抗特性,即RLC串联(简单模型)

320e847e0918964c5527c36bace6e4.jpg

e5fbd16420a743176db29569bf3853.jpg


 

RLC串联后的曲线和LC比较像,同样是有一个自谐振频点,计算方法相同,在自谐振频点以前呈现容性,在自谐振频点以后呈现感性,LC之间也同样存在谐振,不同的是,此时的谐振大小是受控的,大小等于等效串联电阻的大小;

这就是非理想电容的阻抗特性,一定要印在大脑中,正是因为电容对高频的低阻抗特性,我们选择电容来降低PDN阻抗,但也因为电容的寄生参数导致的在某一频段后呈现为感性,因此要选取自谐振频点合适的电容,下面对比几个非理想电容的阻抗曲线,曲线来自电容厂家官方网站spice模型:

f0b02f4c9c68062f95affd6bb61ced.jpg

上边就是几组不同容值的电容阻抗曲线,从10nF到100uF,可以看到,在这个范围内(都是贴片陶瓷电容)寄生电感基本是差不多的,而由于电容容值的不同,导致各自的自谐振频点不同,因此在PDN中去耦时,就要选择合适的电容;


登录后查看更多
0
评论 0
收藏
侵权举报
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表凡亿课堂立场。文章及其配图仅供工程师学习之用,如有内容图片侵权或者其他问题,请联系本站作侵删。

热门评论0

相关文章

硬件电子工程师

一名技术爱好者,我的宗旨是:互相吹捧,共同进步!

开班信息