找到 “输入阻抗” 相关内容 条
  • 全部
  • 默认排序

1、MOS管简介功率MOSFET是电压型驱动器件,输入阻抗高,因而开关速度可以很高。功率MOS管的栅极有等效的输入电容CISS。由于CISS的存在,静态时栅极驱动电流几乎为零,但在开通和关断动态过程中,仍需要一定的驱动电流,MOS管的开关速

一文详解MOS管驱动电路拓扑的设计

前言反相运算放大电路是一种常见的基本运算放大电路。反相运算放大电路设运算放大器的输入阻抗无穷大,也就是说在运算放大器的反相输入端“-”无电流流入或流出,根据运算放大器的“虚短”,运放正相输入端“+”和反相输入端“-”电压相同,因此反相输入端

反相运算放大电路及其扩展应用之反相求和运算

MOS管,即金属氧化物半导体场效应管,凭借着输入阻抗高、开关速度快、热稳定性优良等特点,是现代电子电路中常用的半导体器件之一。在MOS管的结构中有三个重要电极,分别是G极、S极、D极,下面聊聊这些电极。一般来说,一个典型的N沟道MOS管由一

MOS管的G极、S极、D极如何判定区分?

在电子元件中,金属-氧化物半导体场效应晶体管(MOS管)是独特且重要,然而相比其他元件,MOS管很容易失效,导致电路无法正常运行,因此工程师必须查找原因并解决问题。1、MOS管为什么很容易失效?①静电放电(ESD)MOS管的输入阻抗极高,使

为什么MOS管很容易失效?有哪些失效?

输入阻抗,输出阻抗,这两个参数似乎没那么重要,但事实并非如此。下面说下我的看法吧。 一个问题音频中的耦合电容从0.1uF-220uF都有,这是有病吗?都是用作隔离直流的,怎么就不能统一呢?明白这个问题其实很简单,我们看信号是如何传输就容易明白了。这里就讲一个电路

输入输出阻抗,是怎么玩的?你会不?

本文将使用Mathcad对LLC公式进行全面推导,主要包括以下几个部分:定义基本参数:LLC输入阻抗推导LLC经过简化后其框图(如下图)为方波叠加在LR,CR,LM//RAC上面,所以其电压比可以等效为两点的阻抗比,而阻抗与频率有关。输入阻抗为谐振电感的感抗 谐振电容的容抗 等效电阻与励磁电感的感抗

基于Mathcad的LLC公式推导与化简(一)

LLC输入阻抗、增益、最大最小频率及最大Q值的公式见基于Mathcad的LLC公式推导与化简(一)谐振电压、谐振电流、励磁电流:正弦波A为谐振电流IL峰值,B为励磁电流Im峰值,谐振时:励磁电流峰值:励磁电流函数:谐振电流函数:谐振电容电压为谐振电流*容抗,所以其电压为:输出二极管电流:半周期内,输

基于Mathcad的LLC公式推导与化简(二)

在电子电路中,同相放大电路因其输入阻抗高、输出阻抗低、相位无反转等特性被广泛应用。当然工程师会遇见许多关于同相放大电路的问题,其中之一是它输出电阻近似为0,这是为什么?1、共集电路结构特性同相放大电路的核心部分通常采用共集电极(或共源极,对

​同相放大电路的输出电阻为什么是0?

理想的运放电路分析有两大重要原则贯穿始终,即“虚短”与“虚断”。“虚短”的意思是正端和负端接近短路,即V =V-,看起来像“短路”;“虚断”的意思是流入正端及负端的电流接近于零,即I =I-=0,看起来像断路(因为输入阻抗无穷大)。反相比例放大电路根据“虚短”法则,得知运放的正负两个端等同于“短路”

硬件工程师必会知识点1:运放

在电子元件中,MOS管(金属-氧化物-半导体场效应晶体管)因其具备高输入阻抗、低噪声级良好的开关特性备受工程师的青睐,然而在使用MOS管时可能会遇见其失效现象,那么这些失效现象是如何形成的?1、雪崩失效(电压失效)当MOS管的漏源电压(BV

记住这些失效模式,再也不发愁MOS管了!