找到 “硅基光电子技术” 相关内容 条
  • 全部
  • 默认排序

简介硅基光电子技术将硅的电子信号处理能力与光通信的速度和带宽结合在一起,标志着在数据传输的重大飞跃。通过在单个硅芯片上集成光子和电子组件,极大地提高电信、数据中心网络和高速互联网服务的性能、效率和成本效益。硅基光电子技术的核心是波导,即在芯片内限制和引导光的通道。要优化光子器件的设计和功能,了解复杂

基础教程|一文读懂硅基光电子波导

引言量子计算机在解决某些问题方面大有可为,其速度比经典计算机快得多。然而,构建能够运行商业相关算法的大规模量子计算机仍然是重大挑战。扩展量子计算机的一种方法是采用分布式架构,即将多个量子处理器模块联网。在本文中将探讨如何利用硅 T 中心作为分布式量子计算的平台。T 中心是硅中的光学活性缺陷,兼具出色

基于硅基光电子技术利用T中心进行分布式量子计算

简介本教程讨论硅基光电子电路 (PIC) 制造变化的影响。这些变化,尤其是硅厚度和特征尺寸的变化,会严重影响器件性能。了解这些变化对于设计稳健的 PIC 和制定减轻其影响的策略很重要。制造的不均匀性PIC 通常需要精确匹配组件(如环形调制器、光滤波器)之间的中心波长和波导传播常数,以实现波分复用等功

基础教程|硅基光电子技术制造的不均匀性及其对性能的负面影响分析

简介过去六十年里,摩尔定律面临过多次挑战,但半导体工程师总能找到突破,让芯片上的晶体管密度继续翻倍。然而,这背后的成本却在飙升。历来,缩小晶体管尺寸有助于提高芯片的运行速度。目前,制造商已能在硅芯片上形成仅有几个原子厚的微结构。但鉴于物理的极限,这些微结构无法无限缩小,虽然降温或降低电压等方法也能提

行业趋势|硅基光电子技术:开启计算能力新纪元的挑战与机遇

简介元胞自动机(CA)是数学模型,由网格单元组成,每个单元都处于有限的状态之一。每个单元的状态都会根据一组规则在离散的时间步长内更新,这些规则取决于该单元及其相邻单元的状态。从生物过程到计算系统,CA 在各种系统建模中都有应用。惠普实验室(Hewlett Packard Labs)的研究人员最近取得

以硅基光电子技术构建通用元胞自动机(Universal Cellular Automation)

简介随着人工智能(AI)在过去几年的爆炸式增长,对高速互连和更高带宽的需求也急剧上升。这导致对以太网光收发器的需求激增,许多人不禁要问,人工智能是否会成为硅基光电子技术得以广泛应用的 “杀手级应用”。2023 年 3 月,在圣迭戈举行的由 Nvidia 共同主持的行业研讨会上,来自 LightCou

人工智能是硅基光电子技术的杀手级应用吗?

引言随着硅基光电子技术的不断进步,全球代工巨头GlobalFoundries推出了GF Fotonix™技术平台。这一高科技平台结合了单片集成硅基光电子与前沿工艺技术,进而提供性能卓越的光电子组件。本文探讨了GF Fotonix™技术平台的主要特点、架构及其生态系统。 GF平台核心:实现单片硅基光电

GlobalFoundries硅基光电子工艺平台及其强大生态系统支持

简介本文说明硅基光电子技术中光耦合和偏振管理所面对的技术挑战与解决方案,阐述光栅耦合器与边缘耦合器的优缺点,以及用于优化其性能的设计考虑。此外,还探讨了硅基光电子波导存在的固有偏振依赖性问题,包括无源与有源偏振管理技术在克服此难题中的应用与局限。提高光耦合效率与严格控制偏振状态是实现高性能硅基光电子

基础教程|硅基光电子的光耦合和偏振管理技术

简介硅基光电子技术是在硅芯片上集成光学和电子功能的技术,给高速数据通信、光学传感和生物光子学等多个领域带来了革命性的变化。然而,要确保这些芯片的功能和性能,需要强有力的测试和封装策略。本文探讨硅基光电子芯片测试的基本方面,探讨了电气和光学接口技术、可测试性设计(DFT)注意事项以及用于高通量鉴定的自

基础教程|硅基光电子芯片的测试和封装

简介模拟计算机“使用连续变量而非 0 和 1 的设备”的概念可能会让人联想到过去的过时机器。然而,包括人工智能在内的新兴技术可以从这种计算方法中获益匪浅。一个很有前途的方向是使用光而不是电流来处理信息的模拟计算机。超材料是具有奇特光学特性的工程材料,为构建这种模拟光学计算机提供了一个强大的平台。最近

模拟光计算-基于超材料的硅基光电子技术的创新应用