0
收藏
微博
微信
复制链接

同步BUCK降压变换器上管开关速度的优化方法

2023-06-15 14:44
681

同步BUCK降压变化器是应用非常广泛的一种电源结构,其工作频率由早期的低于100KHz,提高到200KHz、300KHz、350KHz、500KHz、1MHz,甚至更高,工作频率的提高带来的好处是电源系统的体积降低,但是,缺点就是开关损耗会增加。


功率MOSFET在进一步减小导通电阻、降低导通损耗的同时,也要降低相应的寄生电容值,以降低开关损耗。开关电源系统高频高效的设计要求,也促使功率MOSFET内部结构不断优化,技术平台不断进步。

 

寄生电容降低,导致BUCK变化器上管开关速度越来越快。上管的开关速度越快,开关损耗越低,但是,也会产生以下问题:

 

(1)上管开通速度太快,开关节点的电压尖峰过高,会影响下管长期工作的可靠性;

 

(2)上管开通速度太快,开关节点的电压变化率dV/dt过大,会产生EMI的问题;同时,会在下管的栅极耦合感应出电压,导致下管误开通。

 

(3)上管关断速度太快,开关节点负压尖峰过高,对PWM IC驱动部分或驱动IC产生问题,如输入信号逻辑错误,内部ESD等保护器件因为过电流而发生损坏;同时还会导致上管发生过压,影响上管长期工作的可靠性。

 

开关节点是上、下管以及输出电感的连接点,在系统PCB板上,对应着一块区域,包括上管的源极S、下管的漏极D、输出电感的管脚SW以及连接这些点的PCB的铜皮。

 

BUCK变换器开关节点的电压尖峰、电压变化率dV/dt、下管的栅极耦合感应电压,和上管的开通速度、下管寄生体二极管的反向恢复特性,以及它们组成的环路都直接相关。

 

BUCK变化器在实际设计过程中,需要对系统效率、开关节点电压的正向过冲、负向过冲、下管栅极耦合感应电压等因素进行综合考虑,折衷平衡,设计出满足要求的系统。

 

包含相关寄生元件的BUCK变化器的原理图,如图1所示。图1中,功率MOSFET方框内为其内部的寄生元件,包括封装的寄生电感。主功率回路在PCB板上对应的寄生电感,分别如图1、图2所示。


图1中,包括上管漏极D到输入电容的寄生电感,上管源极S到输出电感的寄生电感,上管栅极G到IC驱动输出的寄生电感,上管源极S到其IC驱动返回端的寄生电感;下管漏极D到输出电感的寄生电感,下管源极S到输入电容负(地)端的寄生电感,下管栅极G到IC驱动输出的寄生电感,下管源极S到其IC驱动返回端的寄生电感。

 

5743e2e6df7b68bde557ced58faa20.jpg

图1:BUCK变化器原理图


d04bbf507413ce5241353972651ad3.jpg 


图2:BUCK变化器主功率回路

 

为了平衡上述设计因素,实际应用过程中,通常要对上管的开关速度进行调整,降低上管开通速度,有下面几种方法。

 

1、增加上管栅极外部串联驱动电阻RG-H1


d354a43a53f2320d6b90a25cbe526a.jpg 


图3:上管栅极外加串联驱动电阻

 

这种方法会同时降低上管的开通、关断速度,增加开关损耗,这也是工程师经常采用的一种方法。

 

用二极管串联较低阻值的电阻,和RG-H1并联,如图4所示,分别调整开通和关断的速度,使开通速度变慢,关断速度较快,这种驱动电路在ACDC电源系统中经常使用;但是,在Buck变换器中很少采用这种电路,主要的原因是:Buck变换器工作频率高,使用的RG-H1值非常小,不超过5欧姆。

 

在上管的栅极G、源极S或上管栅极G、漏极D,外加电容,如图5所示,也可以调整开关速度,这种方法产生过大的开关损耗,在Buck变换器中也很少采用这种电路。一些负载开关、热插拔电路,以及电机驱动的应用中,经常采用这样方式,限制浪涌电流,或限制过压尖峰。

 

c4c721fba6966a21fbb4789a50b163.jpg


图4:使用二极管分别调整开通和关断速度

 

cdca396231f61100b58047d16cdfd0.jpg 


图5:外加电容调整开关速度

 

2、上管自举驱动电路外接串联电阻

 

上管自举驱动电路外加串联电阻的方法,如图6所示,在自举电路中,串联一个电阻RB,就可以降低上管开通的速度;同时,RB不在上管关断的回路中,可以较快的关断上管,不影响关断损耗。

 

高频的BUCK变换器也经常采用这种方式,它的优点是:降低上管的开通的速度,不影响上管的关断速度。上管开通回路、关断回路的驱动电流路径,如图7、图8所示。


ff81b0bd0c0d718c3a00deeeba8027.jpg


图6:上管自举驱动电路外加串联电阻


22c324b1692802ac1775ea9ab2e9f5.jpg 


图7:上管开通回路


6f16c3bf3c34fc26b2d52bc4a330bb.jpg 


图8:上管关断回路

 

3、增加上管源极外部串联的PCB引线电感

 

为了提高开关速度,降低栅极的振荡,电源工程师通常尽可能减小驱动环路,驱动回路的返回端,也是尽可能连接到功率MOSFET的源极S管脚,如图3所示。

 

如果把上管驱动回路返回端连接到输出电感的管脚,或者直接连接到下管漏极D管脚,这样就增加了上管源极外部串联的PCB引线电感,从而降低上管的开关速度。


具体内容,参考前面文章:同步BUCK降压变换器源极寄生电感对开关性能影响

 

这种方法的优点是:不增加额外的元件,只对上管开关过程中di/dt变化的阶段起作用,对于开关过程中di/dt不发生明显变化的dV/dt阶段不起作用,这样,其对于开关损耗的影响,远小于直接增加栅极外部串联电阻的方式,同时,可以明显的降低开关节点的尖峰电压,减少元件的数量。

 

设计的技巧就是:不同型号的上管和下管,引入多少的PCB引线电感,需要进行具体优化。图8、图9给出了上管驱动回路在源极S引入不同的PCB引线电感的几种走线方式。

 

 c0ce0f8ab81e78f965a5f539282637.jpg


图9:上管驱动回路增加引线电感


 4fc96cd99455cd8895932ca1b61aef.jpg


图10:上管驱动回路增加引线电感的PCB布线

登录后查看更多
0
评论 0
收藏
侵权举报
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表凡亿课堂立场。文章及其配图仅供工程师学习之用,如有内容图片侵权或者其他问题,请联系本站作侵删。

热门评论0

相关文章

松哥电源

松哥电源,致力于提供一个电力电子及电源系统设计与交流的空间,聚集背景相类、价值观相同的电子工程师的智慧,探讨理论,关注细节,评说经验,分享电力电子及电源系统设计的快乐。

开班信息