找到 “变化” 相关内容 条
  • 全部
  • 默认排序

随着技术不断发展,人工智能(AI)已成为现代世界最具决定性的工具之一,尤其是在数据科学领域。人工智能与数据科学的集成,不仅改变了数据分析方式,还改变了新分析的可能性。以下是人工智能进步实施后,给数据科学行业带来的变化。1、自动化机器学习(A

人工智能(AI)如何彻底改变数据科学?

毫无疑问,数据科学彻底改变了我们理解和处理当今世界几乎所有事物的方式。这些变化体现在医疗诊断方式和商业策略优化方式上。唯一的问题是:随着技术的不断发展,数据科学真的会永远存在吗?答案是肯定的,原因如下:1、不断增长的数据格局:生成的数据量呈

未来的数据科学将是什么样?

简介在云计算、视频流和人工智能等应用的推动下,带宽需求不断增长,这就要求光网络具有高度的可扩展性。除了原始带宽之外,可扩展性还包括适应不断变化的连接需求、覆盖区域和新技术,所有这些都需要以经济高效的方式逐步实现。这种适应性可优化资源分配,促进网络的高效增长,并使您的基础设施面向未来。然而,光网络在进

行业知识|可插拔光收发器的模块化优势在哪里?

热释电传感器是一种能够检测和测量红外辐射的器件,它基于热释电效应,通过感知红外辐射的变化来实现目标的检测。热释电传感器广泛应用于安防、自动化控制、电子设备等领域。01热释电传感器基本结构热释电传感器通常由一个热释电材料、一个压敏电阻和一个感

走进电子元件,了解热释电传感器

导言光频梳通过提供在频域中等距分布的多条单频激光线组成的相干光源,给计量、光谱和计时等领域带来了革命性的变化。近年来,大家对在芯片非线性微谐振器中产生锁相光学频率梳(即微梳)产生了浓厚的兴趣。这些锁相微梳状体具有超强的相干性,可在数据通信、光谱传感、光学计算、测距和频率合成等领域实现重要应用。然而,

Nature Communications更新|释放电赋能微梳激光器的潜力

MOS管在电源应用中作为开关用时将会导致一些不可避免的损耗,这些损耗可以分为两类: 一类为器件栅极驱动损耗。前面我们说过:MOSFET的导通和截止过程包括电容CISS的充电和放电。当电容上的电压发生变化时,一定量的电荷就会发生转移;需要一定量的电荷使栅极电压在0和VDRV之间变化变化

MOS功率损耗
文章

EMI设计

话接上篇,上篇整体上介绍了一下EMC,接下来我们详细拆分一下EMC的各个组成。本篇说一说EMI设计辐射的原理上图是电磁波的辐射天线,它是在两个导体之间有一个电压,如果电压是直流的,那么显然,因为两个导体之间是开路的,那么导体上面便不会有电流。如果上面的电压是变化的,那么因为这两个导体之间存在杂散电容

328 0 0
EMI设计

概述电容式触摸感应,是一种通过电容的变化来检测手指接近或触及触摸表面的技术。通过电容式感应,机械开关和旋钮可替换为外观雅致的按钮、滑条和滚轮,以解决:1. 长时间使用后磨损和可靠性降低2. 前面板与按键之间存在缝隙,容易被水分渗透,而引起不良3. 需施加力度才能触发4. 前面板开孔会一定程度上增加成

电容触摸的基本知识与原理

简介本教程讨论硅基光电子电路 (PIC) 制造变化的影响。这些变化,尤其是硅厚度和特征尺寸的变化,会严重影响器件性能。了解这些变化对于设计稳健的 PIC 和制定减轻其影响的策略很重要。制造的不均匀性PIC 通常需要精确匹配组件(如环形调制器、光滤波器)之间的中心波长和波导传播常数,以实现波分复用等功

基础教程|硅基光电子技术制造的不均匀性及其对性能的负面影响分析

电感在我们的开关电源中是一种不可或缺的元器件,它是一种能够储存磁场能量的元件,它在电路中起着重要的作用;主要作用是阻止电流的变化,因此它也被称为“阻抗元件”;在电路中,我们用L表示,电感有多种类型,根据不同的分类标准,可以分为以下几种:如果根据电感的结构,我们可以将电感分为自感式电感和互感式电感两大

332 0 0
电感的作用