- 全部
- 默认排序
此文从射频界面、小的期望信号、大的干扰信号、相邻频道的干扰信号以下几点解读射频电路四大基础性特性,并提供了在电路设计过程中都要非常注意的主要关键因素。 射频电路设计之射频的界面 无线发射器和接收器在基本概念上,可分成基频与射频两个部分。基频包含发射器的输入信号之频率范围之内,也包含接收器的输出信号之频率范围之内。基频的频宽影响了数据在系统中可流动的基本速率。基频是用于改善数据流的稳定度,并在特定的数据传输率之下,减少发射器产生在传输媒介的负荷量。 所以,电路设计基频电路时,都要更多的信号处
电磁干扰的三要素是干扰源、干扰传输途径、干扰接收器。EMC就围绕这些问题进行研究。最基本的干扰抑制技术是屏蔽、滤波、接地。它们主要用来切断干扰的传输途径。广义的电磁兼容控制技术包括抑制干扰源的发射和提高干扰接收器的敏感度,但已延伸到其他学科领域。
什么是PCB射频电路的一些基础特性?你知道什么?此处将从射频界面、小的期望信号、大的干扰信号、相邻频道的干扰四个方面解读射频电路四大基础特性,并给出了在PCB设计过程中需要特别注意的重要因素。1、射频电路仿真之射频的界面无线发射器和接收器在
本文从射频界面、小的期望信号、大的干扰信号、相邻频道的干扰四个方面解读射频电路四大基础特性,并给出了在 PCB 设计过程中需要特别注意的重要因素。射频电路仿真之射频的界面无线发射器和接收器在概念上,可分为基频与射频两个部份。基频包含发射器的
硬件EMC规范讲解电磁干扰的三要素是干扰源、干扰传输途径、干扰接收器。EMC就围绕这些问题进行研究。最基本的干扰抑制技术是屏蔽、滤波、接地。它们主要用来切断干扰的传输途径。广义的电磁兼容控制技术包括抑制干扰源的发射和提高干扰接收器的敏感度,但已延伸到其他学科领域。本规范重点在单板的EMC设计上,附带
1、电磁干扰的产生和传输电磁干扰传输有两种方式:一种是传导传输方式,另一种则是辐射传输方式。传导传输是在干扰源和敏感设备之间有完整的电路连接,干扰信号沿着连接电路传递到接收器而发生电磁干扰现象。辐射传输是干扰信号通过介质以电磁波的形式向外传
LiDAR(光探測和測距)是一種感測器技術,可通過測量發射光從周圍物體反射並返回到接收器所需的時間來幫助創建環境的3D數字地圖。這種3D映射作為自動駕駛汽車的關鍵使能技術在汽車行業變得越來越重要。在汽車行業之外,LiDAR用於移動設備,用於
文章重点介绍在设计新的接收器前端时定义和理解性能权衡,将比较各种有源接收器前端设计方法,包括低噪声放大器 (LNA)、全差分放大器 (FDA) 和经典的无源宽带巴伦。比较 AC 性能权衡在将巴伦、LNA 和 FDA 与TRF1208等单端转
RF接收器是指接收无线射频信号并将其转换成电信号的设备。01RF接收器组成它通常由天线、射频前端、中频处理部分和解调器等组成。1、天线:用于接收射频信号,并将其转换成电信号。2、射频前端:负责对接收到的射频信号进行放大、滤波和混频等处理,以
1、ADC32RF83IRRHR双通道 14 位 3GSPS 单 DDC/通道射频采样宽带接收器和反馈 ICADC32RF83 是 14 位 3GSPS 双通道电信接收器和反馈器件,支持输入频率高达 4GHz 及以上的射频采样。ADC32R