- 全部
- 默认排序
上周我们推送一篇高大上的SiC应用文章,许多资深工程师为之振奋,一些年轻工程师表示要加紧学习,快速提高自己的水平。今天我们再回到基本面,学习功率MOSFET一些基础知识。10多年前做研发使用功率MOSFET、查阅产品数据表的时候,看到前面好几个电流的定义:连续漏极电流ID、IDSM、脉冲漏极电流ID
功率MOSFET的数据表中,通常列出了包括单脉冲雪崩能量EAS、单脉冲雪崩电流IAS、重复脉冲雪崩能量EAR、重复脉冲雪崩电流IAR等参数,许多电子工程师在设计电源系统的过程中,很少考虑到这些参数与电源系统的应用有什么样的联系,如何在实际的应用中评定这些参数对系统的影响,以及在哪些应用条件下需要考虑
在电子工程领域,数字万用表是一种常见的测量工具,常用于测量电压、电流、电阻等各种参数,一般来说,数字万用表的精度是评估其测量准确度的重要指标之一,常见的数字万用表精度为5位半和6位半,这两者有什么区别?1、5位半精度的数字万用表5位半精度的
PCB过电流能力的计算,网络上的资料很多,本文分两部分,一是总结(chaoxi)一下,二是介绍一些实际工作的注意点。一、PCB载流能力的计算关于pcb线宽和电流的经验公式,关系表和软件网上都很多,本文把网上的整理了一下,旨在给广大工程师在设计PCB板的时候提供方便。 以下总结了八种电流与线宽的关系公
稳压二极管和普通二极管都是半导体器件,在外观上看起来很相似,但是它们在实际应用中有很大的区别。如果您对即将涉及的内容感兴趣,那么请继续阅读下文吧,希望能对您有所帮助。首先,普通二极管的主要作用是将电流限制在一个方向,也就是说,它只允许电流在
电线过细会不会更加耗电?
当电子工程师在设计PCB布局布线时都会犹豫电线的粗细,电线的尺寸直接影响电路的性能和能耗,在选择电线尺寸时,需要综合考虑电流负载、电线长度、功率损耗及电源的供应能力等,那么电线过细是否会更加耗电?一般来说,电线过细会带来以下问题:1、高电阻
运放恒流实战操作
运放恒流源实战操作记录网上有很多的关于运放恒流源电路设计的电路,也都非常经典,目前实际项目中用到了这个经典的电路,还是记录一下经验心得和大家一起分享一下吧!运放大家都不会陌生了吧,模拟电子中一个神一样存在的器件,可放大电压,可采样电流,电流
深度负反馈的近似计算
今天就一个重点,深度负反馈的近似计算。深度负反馈近似计算的分析步骤 第一步,判断电路反馈类型,看清楚是求解对应增益还是对应电压增益,确定增益Af的具体形式; 第二步,标出相关电流的流向,或电压的瞬时极性; 第三步,利用深度负反馈的“虚断”和“虚短”分析电路、求解问题。01注意 不
案例简介该设计是应用TI公司电流模式PWM控制器芯片UC2845来设计隔离反激式变换器,设计的基本要求如下:输入电压:90VAC-264VAC(100VDC-350VDC);输出电压:5.4V;输出电流:4A;开关频率:100KHz;一、技术分析01工作原理隔离反激式变换器的工作原理(图1):开关导
开关频率优化一般来讲,开关频率越高,输出滤波器元件L和CO的尺寸越小。因此,可减小电源的尺寸,降低其成本。带宽更高也可以改进负载瞬态响应。但是,开关频率更高也意味着与交流相关的功率损耗更高,这需要更大的电路板空间或散热器来限制热应力。目前,对于 ≥10A的输出电流应用,大多数降压型电源的工作频率范围